Pfaffian Expressions for Random Matrix Correlation Functions
نویسنده
چکیده
It is well known that Pfaffian formulas for eigenvalue correlations are useful in the analysis of real and quaternion random matrices. Moreover the parametric correlations in the crossover to complex random matrices are evaluated in the forms of Pfaffians. In this article, we review the formulations and applications of Pfaffian formulas. For that purpose, we first present the general Pfaffian expressions in terms of the corresponding skew orthogonal polynomials. Then we clarify the relation to Eynard and Mehta’s determinant formula for hermitian matrix models and explain how the evaluation is simplified in the cases related to the classical orthogonal polynomials. Applications of Pfaffian formulas to random matrix theory and other fields are also mentioned.
منابع مشابه
Random Matrix Model for Nakagami-Hoyt Fading
Random matrix model for the Nakagami-q (Hoyt) fading in multiple-input multiple-output (MIMO) communication channels with arbitrary number of transmitting and receiving antennas is considered. The joint probability density for the eigenvalues of HH (or HH), where H is the channel matrix, is shown to correspond to the Laguerre crossover ensemble of random matrices and is given in terms of a Pfaf...
متن کاملAverages of Characteristic Polynomials in Random Matrix Theory
We compute averages of products and ratios of characteristic polynomials associated with Orthogonal, Unitary, and Symplectic Ensembles of Random Matrix Theory. The pfaffian/determinantal formulas for these averages are obtained, and the bulk scaling asymptotic limits are found for ensembles with Gaussian weights. Classical results for the correlation functions of the random matrix ensembles and...
متن کاملCorrelation Functions of Ensembles of Asymmetric Real Matrices
We give a closed form for the correlation functions of ensembles of asymmetric real matrices in terms of the Pfaffian of an antisymmetric matrix formed from a 2×2 matrix kernel associated to the ensemble. We also derive closed forms for the matrix kernel and correlation functions for Ginibre’s real ensemble. Difficulties arise in the study of ensembles of asymmetric random matrices which do not...
متن کاملMassive partition functions and complex eigenvalue correlations in Matrix Models with symplectic symmetry
We compute all massive partition functions or characteristic polynomials and their complex eigenvalue correlation functions for non-Hermitean extensions of the symplectic and chiral symplectic ensemble of random matrices. Our results are valid for general weight functions without degeneracies of the mass parameters. The expressions we derive are given in terms of the Pfaffian of skew orthogonal...
متن کاملThe Ginibre ensemble of real random matrices and its scaling limits
We give a closed form for the correlation functions of ensembles of a class of asymmetric real matrices in terms of the Pfaffian of an antisymmetric matrix formed from a 2×2 matrix kernel associated to the ensemble. We apply this result to the real Ginibre ensemble and compute the bulk and edge scaling limits of its correlation functions as the size of the matrices becomes large.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008